The Impact of Short-term Variability and Uncertainty on Long-term Power Planning Problems

Henrik C. Bylling, Salvador Pineda, Trine K. Boomsma

Department of Mathematical Sciences
University of Copenhagen

INFORMS, November 15th, 2016
Motivation

- More RES → more variability and uncertainty

Wind production in DK1

Wind production and forecast error 2014

Wind production and forecast error January 2014
Motivation

- More RES → more variability and uncertainty → dynamic and stochastic optimization → computational problems

Wind production in DK1

Wind production and forecast error 2014

Wind production and forecast error January 2014
Research questions

- Quantify the trade-off between including uncertainty and variability of renewable production in terms of performance and computational times.
- How to include short-term uncertainty and variations in the best way.
Short-term effects

Two short-term effects that call for flexible generation:

- Inter-temporal variation.
- Uncertainty balancing.

They overlap but we try to analyse them separately - inter-temporal variations through ramping limits and uncertainty balancing market.
Short-term effects

Two short-term effects that call for flexible generation:
- Inter-temporal variation.
- Uncertainty balancing.

They overlap but we try to analyse them separately - inter-temporal variations through ramping limits and uncertainty balancing market.

Investment model

Static central planner investment model:
- Central planner minimizes investment and operating cost
- No existing generating capacity
- Minimum wind penetration constraint

For simplicity, disregard unit commitment decisions and network constraints.
Models

Model overview (LP)

\[
\begin{align*}
\text{Min}_{p_g, p_{gt}, \bar{p}_{gts}} & \quad \sum_g \left[C^I(\bar{p}_g) + \sum_t (C^{DA}(p_{gt}) + \sum_s \pi_s C^B(\tilde{p}_{gts})) \right] \\
\text{s.t.} & \quad p_{gt} \leq \bar{p}_g \quad \forall g \\
& \quad \sum_g p_{gt} = d_t \\
& \quad -r_g \leq p_{gt} - p_{g(t-1)} \leq r_g \quad \forall g \\
& \quad \sum_g \bar{p}_{gts} = 0 \\
& \quad 0 \leq p_{gt} + \bar{p}_{gts} \leq \bar{p}_g \quad \forall g \\
& \quad -r_g \leq p_{gt} + \bar{p}_{gts} - p_{g(t-1)} - \bar{p}_{g(t-1)s} \leq r_g \quad \forall g
\end{align*}
\]

Objective

Day-ahead

Balancing

Additional

- Load shedding (with cost)
- Wind curtailment (with cost)
Models

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Daily approach With ramping</th>
<th>Hourly approach Without ramping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>DC</td>
<td>HC</td>
</tr>
<tr>
<td>Deterministic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic</td>
<td>DS</td>
<td>HS</td>
</tr>
<tr>
<td>With balancing market</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

Illustrative Example

Illustrative example with a time horizon of 6 days
Illustrative Example

Illustrative example with a time horizon of 6 days

Demand and wind

Each day consists of two time periods.

Variation over time

- Day 1
- Day 2 (average)
- Day 3

δ_d

Stochastic variation

- δ_w
- s_1
- s_2

Demand and wind
Units

In order to pinpoint the different effects, units are assumed very specialized (and unrealistic).

The considered units are: wind, inflex, flexDA, flexBal and flex.

Evaluation

The investment decisions from each approach is fixed in the full (DS-6) model in order to evaluate the impact of investments in terms of total system costs.

For each approach, the procedure is:

1. Solve the problem.
2. Fix the investment decision in the full approach.
3. Solve the full approach for day-ahead and balancing production variables.
The Impact of Short-term on Long-term Planning

Bylling, Pineda, Boomsma

Introduction

Short-term effect

Models

Example

Case Study

Conclusion

Example

Results

Analysis:

• Uncertainty and variations effects

• In this example, uncertainty is dominant.
Case Study

Data and approach

- Data from region DK1: Demand, Wind forecast and Wind production.
- Uncertainty in forecast error - modelled as an AR(2) process and scenarios sampled from this.
- Realistic investment data (annualized)
- Representative days/hours from clustering.
- Official 2020 target: 30% RES.
- No initial installed capacity.

Figure: Source: nordpoolspot.com
Case Study

Units

<table>
<thead>
<tr>
<th>g</th>
<th>wind</th>
<th>coal</th>
<th>gas</th>
<th>nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_g^f (T€/MW)</td>
<td>124</td>
<td>106</td>
<td>51</td>
<td>150</td>
</tr>
<tr>
<td>c_g (€/MWh)</td>
<td>0</td>
<td>31.4</td>
<td>63.1</td>
<td>15.4</td>
</tr>
<tr>
<td>c_g^+, c_g^- (€/MWh)</td>
<td>0</td>
<td>6.28</td>
<td>12.62</td>
<td>3.08</td>
</tr>
<tr>
<td>r_g^D, r_g^U (p.u.)</td>
<td>1</td>
<td>0.3</td>
<td>0.7</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table: Generation unit data for the case study. Sources: [1],[2],[3]

Balancing costs c_g^+, c_g^- are assumed as 20% of the linear production cost c_g.
Case Study

Full model results

<table>
<thead>
<tr>
<th>Approach</th>
<th>wind</th>
<th>coal</th>
<th>gas</th>
<th>nuclear</th>
<th>Runtime (s)</th>
<th>TC</th>
<th>IC</th>
<th>OC</th>
<th>LSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC-8760</td>
<td>2631</td>
<td>243</td>
<td>897</td>
<td>1928</td>
<td>10</td>
<td>1,037</td>
<td>686</td>
<td>321</td>
<td>7</td>
</tr>
<tr>
<td>DC-365</td>
<td>2631</td>
<td>928</td>
<td>747</td>
<td>1426</td>
<td>164</td>
<td>995</td>
<td>676</td>
<td>308</td>
<td>4</td>
</tr>
<tr>
<td>HS-8760</td>
<td>2631</td>
<td>242</td>
<td>922</td>
<td>1954</td>
<td>2787</td>
<td>1,035</td>
<td>691</td>
<td>320</td>
<td>4</td>
</tr>
<tr>
<td>DS-365</td>
<td>2631</td>
<td>955</td>
<td>758</td>
<td>1420</td>
<td>10240</td>
<td>994</td>
<td>678</td>
<td>307</td>
<td>3</td>
</tr>
</tbody>
</table>

Table: Investment decisions and runtimes for the different approaches. Total costs (TC), investment costs (IC), operating costs (OC) and load shedding costs (LSC) all in M€

Analysis

- W/ ramping: nuclear is substituted by coal.
- W/ uncertainty: increase in coal and gas.
- Stochastic model increases runtime.
Case Study

Varying no. of days/hours

- Low impact from no. of hours.
- For more than 40 days, uncertainty is irrelevant.

Figure: Total costs difference in % between aggregated approaches and DS-365.
Case Study

Investment decisions

<table>
<thead>
<tr>
<th>Wind capacity (MW)</th>
<th>No of days/hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/240</td>
</tr>
<tr>
<td></td>
<td>2,600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coal capacity (MW)</th>
<th>No of days/hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/240</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas capacity (MW)</th>
<th>No of days/hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/240</td>
</tr>
<tr>
<td></td>
<td>800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nuclear capacity (MW)</th>
<th>No of days/hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/240</td>
</tr>
<tr>
<td></td>
<td>1400</td>
</tr>
</tbody>
</table>

Legend:
- HC
- HS
- DC
- DS
- DS-365
Sensitivity Analysis

Balancing costs reflects ramping \(c_g^+ = M \frac{c_g}{p_g} \)

- Balancing costs have an effect.
- Hard to get realistic estimate.
- In this model, ramping is still more important.
Conclusion

- Including short-term uncertainty in generation expansion models yields a high computational burden but no significant better solution.
- Including inter-temporal constraints is crucial to capture flexibility needs.
- The coupling of flexibility in a realistic setup regarding short-term variability and uncertainty means including variability needs also serves the uncertainty needs.
Conclusion

• Including short-term uncertainty in generation expansion models yields a high computational burden but no significant better solution.

• Including inter-temporal constraints is crucial to capture flexibility needs.

• The coupling of flexibility in a realistic setup regarding short-term variability and uncertainty means including variability needs also serves the uncertainty needs.

Further research

• Include network, unit commitment constraints, market power etc.

• Clustering days/hours more efficiently.
Thank you for your attention.

Any questions?

Appendix

Unit Data

<table>
<thead>
<tr>
<th>g</th>
<th>wind</th>
<th>inflex</th>
<th>flexDA</th>
<th>flexBal</th>
<th>flex</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_g^T (€/MW)</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>c_g (€/MWh)</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>c_g^+, c_g^- (€/MWh)</td>
<td>0.001</td>
<td>500</td>
<td>500</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>r_g^D, r_g^U (p.u.)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Evaluation steps

In order to evaluate the investment decisions resulting from the different approaches, the following procedure is incorporated:

1. Solve each of the approaches: DC-6, DS-6, DC-2, DS-2, HC-4, HS-4.

2. Fix the investment decision made by each approach and solve the generation expansion problem using the DS-6 approach (without minimum wind constraints).

3. Evaluate the investment decisions of each approach by simulating the real system operation that includes both time variability and short-term uncertainties.
The Impact of Short-term on Long-term Planning

Bylling, Pineda, Boomsma

References

Appendix

Appendix

<table>
<thead>
<tr>
<th>Approach</th>
<th>Wind</th>
<th>Coal</th>
<th>Gas</th>
<th>Nuclear</th>
<th>Runtime</th>
<th>Total Costs</th>
<th>Meas. Wind Pen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-365</td>
<td>2631</td>
<td>928</td>
<td>747</td>
<td>1428</td>
<td>139</td>
<td>994.66</td>
<td>0.3</td>
</tr>
<tr>
<td>DS-365</td>
<td>2631</td>
<td>955</td>
<td>758</td>
<td>1420</td>
<td>10127</td>
<td>994.29</td>
<td>0.3</td>
</tr>
<tr>
<td>HC-240</td>
<td>2639</td>
<td>278</td>
<td>957</td>
<td>1972</td>
<td>0</td>
<td>1032.75</td>
<td>0.301</td>
</tr>
<tr>
<td>DC-480</td>
<td>2612</td>
<td>269</td>
<td>957</td>
<td>1863</td>
<td>0</td>
<td>1030.66</td>
<td>0.298</td>
</tr>
<tr>
<td>HC-720</td>
<td>2625</td>
<td>267</td>
<td>952</td>
<td>1988</td>
<td>0</td>
<td>1032.75</td>
<td>0.299</td>
</tr>
<tr>
<td>HC-960</td>
<td>2630</td>
<td>261</td>
<td>972</td>
<td>1994</td>
<td>0</td>
<td>1034.28</td>
<td>0.3</td>
</tr>
<tr>
<td>HC-1200</td>
<td>2631</td>
<td>261</td>
<td>952</td>
<td>1994</td>
<td>0</td>
<td>1034.39</td>
<td>0.3</td>
</tr>
<tr>
<td>HC-1440</td>
<td>2631</td>
<td>261</td>
<td>952</td>
<td>1994</td>
<td>0</td>
<td>1034.39</td>
<td>0.3</td>
</tr>
<tr>
<td>HC-1680</td>
<td>2631</td>
<td>261</td>
<td>968</td>
<td>1994</td>
<td>0</td>
<td>1034.33</td>
<td>0.3</td>
</tr>
<tr>
<td>HC-1920</td>
<td>2631</td>
<td>260</td>
<td>962</td>
<td>1996</td>
<td>1</td>
<td>1034.59</td>
<td>0.3</td>
</tr>
<tr>
<td>HC-2160</td>
<td>2631</td>
<td>260</td>
<td>962</td>
<td>1996</td>
<td>1</td>
<td>1034.54</td>
<td>0.3</td>
</tr>
<tr>
<td>HC-2400</td>
<td>2630</td>
<td>263</td>
<td>950</td>
<td>1995</td>
<td>1</td>
<td>1034.22</td>
<td>0.3</td>
</tr>
<tr>
<td>HS-240</td>
<td>2681</td>
<td>240</td>
<td>909</td>
<td>1998</td>
<td>3</td>
<td>1044.26</td>
<td>0.306</td>
</tr>
<tr>
<td>HS-480</td>
<td>2730</td>
<td>236</td>
<td>934</td>
<td>1968</td>
<td>8</td>
<td>1049.19</td>
<td>0.311</td>
</tr>
<tr>
<td>HS-720</td>
<td>2678</td>
<td>236</td>
<td>952</td>
<td>1948</td>
<td>18</td>
<td>1040.75</td>
<td>0.305</td>
</tr>
<tr>
<td>HS-960</td>
<td>2601</td>
<td>232</td>
<td>962</td>
<td>1942</td>
<td>30</td>
<td>1030.7</td>
<td>0.297</td>
</tr>
<tr>
<td>HS-1200</td>
<td>2610</td>
<td>231</td>
<td>967</td>
<td>1938</td>
<td>48</td>
<td>1031.68</td>
<td>0.298</td>
</tr>
<tr>
<td>HS-1440</td>
<td>2591</td>
<td>237</td>
<td>970</td>
<td>1940</td>
<td>78</td>
<td>1028.49</td>
<td>0.295</td>
</tr>
<tr>
<td>HS-1680</td>
<td>2598</td>
<td>238</td>
<td>981</td>
<td>1940</td>
<td>105</td>
<td>1029.1</td>
<td>0.296</td>
</tr>
<tr>
<td>HS-1920</td>
<td>2621</td>
<td>241</td>
<td>965</td>
<td>1943</td>
<td>128</td>
<td>1032.21</td>
<td>0.299</td>
</tr>
<tr>
<td>HS-2160</td>
<td>2637</td>
<td>237</td>
<td>960</td>
<td>1946</td>
<td>152</td>
<td>1035</td>
<td>0.301</td>
</tr>
<tr>
<td>HS-2400</td>
<td>2641</td>
<td>237</td>
<td>964</td>
<td>1946</td>
<td>202</td>
<td>1035.26</td>
<td>0.301</td>
</tr>
<tr>
<td>DC-10</td>
<td>2690</td>
<td>838</td>
<td>463</td>
<td>1481</td>
<td>0</td>
<td>1084.96</td>
<td>0.307</td>
</tr>
<tr>
<td>DC-20</td>
<td>2740</td>
<td>899</td>
<td>500</td>
<td>1402</td>
<td>1</td>
<td>1075.18</td>
<td>0.312</td>
</tr>
<tr>
<td>DC-30</td>
<td>2728</td>
<td>873</td>
<td>532</td>
<td>1396</td>
<td>1</td>
<td>1073.84</td>
<td>0.311</td>
</tr>
<tr>
<td>DC-40</td>
<td>2743</td>
<td>840</td>
<td>803</td>
<td>1452</td>
<td>2</td>
<td>1058.61</td>
<td>0.313</td>
</tr>
<tr>
<td>DC-50</td>
<td>2703</td>
<td>868</td>
<td>811</td>
<td>1418</td>
<td>3</td>
<td>1003.3</td>
<td>0.308</td>
</tr>
<tr>
<td>DC-60</td>
<td>2661</td>
<td>876</td>
<td>812</td>
<td>1412</td>
<td>3</td>
<td>998.45</td>
<td>0.303</td>
</tr>
<tr>
<td>DC-70</td>
<td>2641</td>
<td>894</td>
<td>803</td>
<td>1403</td>
<td>5</td>
<td>996.1</td>
<td>0.301</td>
</tr>
<tr>
<td>DC-80</td>
<td>2627</td>
<td>909</td>
<td>797</td>
<td>1395</td>
<td>6</td>
<td>994.44</td>
<td>0.3</td>
</tr>
<tr>
<td>DC-90</td>
<td>2612</td>
<td>915</td>
<td>792</td>
<td>1395</td>
<td>9</td>
<td>992.73</td>
<td>0.298</td>
</tr>
<tr>
<td>DC-100</td>
<td>2620</td>
<td>914</td>
<td>783</td>
<td>1405</td>
<td>11</td>
<td>993.52</td>
<td>0.299</td>
</tr>
<tr>
<td>DS-10</td>
<td>2690</td>
<td>856</td>
<td>531</td>
<td>1494</td>
<td>7</td>
<td>1036.71</td>
<td>0.307</td>
</tr>
<tr>
<td>DS-20</td>
<td>2740</td>
<td>883</td>
<td>559</td>
<td>1446</td>
<td>30</td>
<td>1037.74</td>
<td>0.312</td>
</tr>
<tr>
<td>DS-30</td>
<td>2728</td>
<td>872</td>
<td>578</td>
<td>1438</td>
<td>59</td>
<td>1036.29</td>
<td>0.311</td>
</tr>
<tr>
<td>DS-40</td>
<td>2743</td>
<td>872</td>
<td>788</td>
<td>1444</td>
<td>108</td>
<td>1007.83</td>
<td>0.313</td>
</tr>
<tr>
<td>DS-50</td>
<td>2703</td>
<td>899</td>
<td>801</td>
<td>1411</td>
<td>187</td>
<td>1002.76</td>
<td>0.308</td>
</tr>
<tr>
<td>DS-60</td>
<td>2661</td>
<td>906</td>
<td>802</td>
<td>1402</td>
<td>274</td>
<td>998.04</td>
<td>0.303</td>
</tr>
<tr>
<td>DS-70</td>
<td>2641</td>
<td>928</td>
<td>783</td>
<td>1398</td>
<td>337</td>
<td>995.73</td>
<td>0.301</td>
</tr>
<tr>
<td>DS-80</td>
<td>2627</td>
<td>941</td>
<td>777</td>
<td>1393</td>
<td>416</td>
<td>994.11</td>
<td>0.3</td>
</tr>
<tr>
<td>DS-90</td>
<td>2612</td>
<td>948</td>
<td>771</td>
<td>1393</td>
<td>719</td>
<td>992.42</td>
<td>0.298</td>
</tr>
<tr>
<td>DS-100</td>
<td>2620</td>
<td>949</td>
<td>753</td>
<td>1400</td>
<td>825</td>
<td>993.38</td>
<td>0.299</td>
</tr>
</tbody>
</table>

Table: Investment decisions and runtimes for the different approaches.
Sensitivity Analysis

Increased wind uncertainty

![Graph showing increased wind uncertainty](image1)

Analysis on balancing costs

![Graph showing analysis on balancing costs](image2)

Sensitivity Analysis

- Stochastic approaches outperform the deterministic approaches as uncertainty increases.
- Daily approaches still outperform hourly approaches.
- No effect from balancing costs.
Appendix

Computer statistics

<table>
<thead>
<tr>
<th>Model</th>
<th>AMD Opteron(tm) Processor 6380</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>2.5 GHz</td>
</tr>
<tr>
<td>No. of CPUs</td>
<td>64</td>
</tr>
<tr>
<td>Memory</td>
<td>250 GB</td>
</tr>
<tr>
<td>GAMS version</td>
<td>24.5.4</td>
</tr>
<tr>
<td>GAMS release</td>
<td>r54492 LEX-LEG x86 64bit/Linux</td>
</tr>
</tbody>
</table>